Functional Materials Design via Structural Regulation Originated from Ions Introduction: A Study Case in Cesium Iodate System

2018 
Tailored structural regulation to achieve novel compounds with special properties is very attractive and important for functional material design. In this paper, CsIO3 was selected as a maternal structure and three new derivatives, namely, CsIO2F2, Cs3(IO2F2)3·H2O, and Cs(IO2F2)2·H5O2, were successfully prepared by introducing different units (F–, H2O, H5O2+, and IO2F2–) under hydrothermal condition for the first time. Then, the structural transformations were schematically analyzed and the corresponding properties originated from ions introduction were investigated. Therein, noncentrosymmetric CsIO3 and CsIO2F2 exhibit good nonlinear optical properties with large second-harmonic generation (SHG) effects (15 × and 3 × KH2PO4), wide band gaps (4.2 and 4.5 eV), wide transmittance ranges (∼0.27–5.5 μm), and high laser damage thresholds (15 × and 20 × AgGaS2, respectively), which shows that they are potential nonlinear optical materials in near-ultraviolet to mid-infrared. To further analyze the structure–pro...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    42
    Citations
    NaN
    KQI
    []