Programmable Adaptive Security Scanning for Networked Microgrids

2021 
Abstract Communication-dependent and software-based distributed energy resources (DERs) are extensively integrated into modern microgrids, providing extensive benefits such as increased distributed controllability, scalability, and observability. However, malicious cyber-attackers can exploit various potential vulnerabilities. In this study, a programmable adaptive security scanning (PASS) approach is presented to protect DER inverters against various power-bot attacks. Specifically, three different types of attacks, namely controller manipulation, replay, and injection attacks, are considered. This approach employs both software-defined networking technique and a novel coordinated detection method capable of enabling programmable and scalable networked microgrids (NMs) in an ultra-resilient, time-saving, and autonomous manner. The coordinated detection method efficiently identifies the location and type of power-bot attacks without disrupting normal NM operations. Extensive simulation results validate the efficacy and practicality of the PASS for securing NMs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    1
    Citations
    NaN
    KQI
    []