MOF-Derived Hierarchical MnO-Doped Fe3O4@C Composite Nanospheres with Enhanced Lithium Storage

2018 
Hierarchically nanostructured binary/multiple transition-metal oxides with electrically conductive coatings are very attractive for lithium-ion batteries owing to their excellent electrochemical properties induced by their unique compositions and microstructures. Herein, hierarchical MnO-doped Fe3O4@C composite nanospheres are prepared by a simple one-step annealing in Ar atmosphere, using Mn-doped Fe-based metal–organic frameworks (Mn-doped MIL-53(Fe)) as precursor. The MnO-doped Fe3O4@C composite particles have a uniform nanosphere structure with a diameter of ∼100 nm, and each nanosphere is composed of clustered primary nanoparticles with an amorphous carbon shell, forming a unique hierarchical nanoarchitecture. The as-prepared hierarchical MnO-doped Fe3O4@C composite nanospheres exhibit markedly enhanced lithium-storage performance, with a large capacity of 1297.5 mAh g–1 after 200 cycles at 200 mA g–1. The cycling performance is clarified through analyzing the galvanostatic discharge/charge voltage p...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    46
    Citations
    NaN
    KQI
    []