High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay

2020 
Tomato is an agronomically important crop that can be infected by Pseudomonas syringae, a Gram-negative bacterium, resulting in bacterial speck disease. The tomato-P. syringae pv. tomato pathosystem is widely used to dissect the genetic basis of plant innate responses and disease resistance. While disease was successfully managed for many decades through the introduction of the Pto/Prf gene cluster from Solanum pimpinellifolium into cultivated tomato, race 1 strains of P. syringae have evolved to overcome resistance conferred by the Pto/Prf gene cluster and occur worldwide. Wild tomato species are important reservoirs of natural diversity in pathogen recognition, because they evolved in diverse environments with different pathogen pressures. In typical screens for disease resistance in wild tomato, adult plants are used, which can limit the number of plants that can be screened due to their extended growth time and greater growth space requirements. We developed a method to screen 10-day-old tomato seedlings for resistance, which minimizes plant growth time and growth chamber space, allows a rapid turnover of plants, and allows large sample sizes to be tested. Seedling outcomes of survival or death can be treated as discrete phenotypes or on a resistance scale defined by amount of new growth in surviving seedlings after flooding. This method has been optimized to screen 10-day-old tomato seedlings for resistance to two P. syringae strains and can easily be adapted to other P. syringae strains.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []