Florfenicol restructured the microbial interaction network for wastewater treatment by microbial electrolysis cells

2020 
Abstract To investigate the influence of antibiotics on microbial interactions in a biofilm community, we set up eight replicate reactors of microbial electrolysis cell (MEC) and applied a broad-spectrum antibiotic florfenical (FLO) as an environmental disturbance. According to the results, exposure to FLO resulted in degradation of reactor performance. The MEC could also rebound back to the comparably stable state at a certain time which exhibited a great resilience ability in response to antibiotic disturbance. The FLO perturbation showed a significant influence on the electroactive biofilms (EABs) with a distinct reformation of the community structure. Network analysis revealed that microbial interactions in the biofilms after full recovery became much closer, with a rapid increase in the positive interactions between the predominant genus Geobacter and other microorganisms as compared to the stage before FLO disturbance. Moreover, the keystone species in the networks after full recovery possessed more connections between Geobacter and potential synergistic species. Our results demonstrated that FLO, with broad-spectrum antibacterial ability, could restructure the EABs with more positive interactions for hydrogen production. This study demonstrated the response mechanisms of the MECs to the antibiotic disturbance, providing a scientific reference for the rapid development of this biotechnology to treat wastewater containing antibiotics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    8
    Citations
    NaN
    KQI
    []