New geophysical memory-logging system for highly unstable and inclined scientific exploration drilling

2021 
Abstract. We established a cable-free memory-logging system for drill-string-deployed geophysical borehole measurements. For more than 20 years, various so-called “logging while tripping” (LWT) techniques have been available in the logging service industry. However, this method has rarely been used in scientific drilling, although it enables logging in deviated and unstable boreholes, such as in lacustrine sediment drilling projects. LWT operations have a far lower risk of damage or loss of downhole logging equipment compared with the common wireline logging. For this purpose, we developed, tested, and commissioned a modular memory-logging system that does not require drill string modifications, such as special collars, and can be deployed in standard wireline core drilling diameters (HQ, bit size of 96 mm, and PQ, bit size of 123 mm). The battery-powered, autonomous sondes register the profiles of the natural GR (gamma radiation) spectrum, sonic velocity, magnetic susceptibility, electric resistivity, temperature, and borehole inclination in high quality while they are pulled out along with the drill string. As a precise depth measurement carried out in the drill rig is just as important as the actual petrophysical downhole measurements, we developed depth-measuring devices providing a high accuracy of less than 0.1 m deviation from the wireline-determined depth. Moreover, the modular structure of the system facilitates sonde deployment in online mode for wireline measurements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    0
    Citations
    NaN
    KQI
    []