Effect of spatial resolution and filtering on mapping cardiac fibrillation
2017
Background Endocardial mapping tools use variable interelectrode resolution, whereas body surface mapping tools use narrow bandpass filtering (BPF) to map fibrillatory mechanisms established by high-resolution optical imaging. Objective The purpose of this study was to study the effect of resolution and BPF on the underlying mechanism being mapped. Methods Hearts from 14 healthy New Zealand white rabbits were Langendorff perfused. We studied the effect of spatial resolution and BPF on the location and characterization of rotors by comparing phase singularities detected by high-resolution unfiltered optical maps and of fibrillating myocardium with decimated and filtered maps with simulated electrode spacing of 2, 5, and 8 mm. Results As we decimated the maps with 2-mm, 5-mm, and 8-mm interelectrode spacing, the mean ( ± SD) number of rotors detected decreased from 10.2 ± 9.6, 1.6 ± 3.2, and 0.2 ± 0.5, respectively. Lowering the resolution led to synthesized pseudo-rotors that may be inappropriately identified. Applying a BPF led to fewer mean phase singularities detected (248 ± 207 vs 333 ± 130; P P P Conclusion Electrode resolution and BPF of electrograms can result in distortion of the underlying electrophysiology of fibrillation. Newer mapping techniques need to demonstrate sensitivity analysis to quantify the degree of distortion before clinical use to avoid inaccurate electrophysiologic interpretation.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
30
References
16
Citations
NaN
KQI