Cortico-subcortical functional connectivity profiles of resting-state networks in marmosets and humans

2020 
Understanding the similarity of cortico-subcortical networks topologies between humans and nonhuman primate species is critical to study the origin of network alternations underlying human neurological and neuropsychiatric diseases. The New World common marmoset (Callithrix jacchus) has become popular as a non-human primate model for human brain function. Most marmoset connectomic research, however, has exclusively focused on cortical areas, with connectivity to subcortical networks less extensively explored. Here, we aimed to first isolate patterns of subcortical connectivity with cortical resting-state networks (RSNs) in awake marmosets using resting-state functional magnetic resonance imaging (RS-fMRI), then to compare these networks to those in humans using connectivity fingerprinting. In this study, we used five marmosets (four males, one female). While we could match several marmoset and human RSNs based on their functional fingerprints, we also found a few striking differences, for example strong functional connectivity of the default mode network with the superior colliculus in marmosets that was much weaker in humans. Together, these findings demonstrate that many of the core cortico-subcortical networks in humans are also present in marmosets, but that small, potentially functionally relevant differences exist. SIGNIFICANCE STATEMENT The common marmoset is becoming increasingly popular as an additional preclinical nonhuman primate model for human brain function. Here we compared the functional organization of cortico-subcortical networks in marmosets and humans using ultra-high field fMRI. We isolated the patterns of subcortical connectivity with cortical resting-state networks (RSNs) in awake marmosets using resting-state functional magnetic resonance imaging (RS-fMRI) and then compared these networks to those in humans using connectivity fingerprinting. While we could match several marmoset and human RSNs based on their functional fingerprints, we also found several striking differences. Together, these findings demonstrate that many of the core cortico-subcortical RSNs in humans are also present in marmosets, but that small, potentially functionally relevant differences exist.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    6
    Citations
    NaN
    KQI
    []