Key factors determining efficiency of liquid-liquid extraction: implications from molecular dynamics simulations of biphasic behaviors of CyMe4-BTPhen and its Am(III) complexes

2020 
CyMe4-BTPhen (2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline, denoted as L) has been considered as a promising extractant in lanthanide(III)/actinide(III) separation. Vast endeavors in its application put forward a compelling need on the understanding of the underlying mechanism in the liquid–liquid extraction. To address the issue of its dynamics in biphasic systems, we carried out molecular dynamics (MD) simulations of L and its complexes with a heavy f-block metal ion, americium(III) (Am3+) in “oil”/water binary solvents. Two types of organic phases have been considered, differing in the presence of octanol in the bulk n-dodecane or not, and the distribution of the solutes and their interfacial behaviors have been investigated. Two of the key factors that determine the efficiency of a liquid–liquid extraction protocol were delineated and discussed, that is, the appropriate ligand to enhance the lipophilicity of AmL complexes and appropriate way to form ion p...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []