Trisomy 21 induces pericentrosomal crowding disrupting early stages of primary ciliogenesis and mouse cerebellar development

2021 
Primary cilia are signaling organelles essential for development and homeostasis. Loss of primary cilia is lethal, and decreased or defective cilia cause multisystemic conditions called ciliopathies. Down syndrome shares clinical overlap with ciliopathies. We previously showed that trisomy 21 diminishes primary cilia formation and function due to elevated Pericentrin, a centrosome protein encoded on chromosome 21. Pericentrin is mislocalized, creating aggregates that disrupt pericentrosomal trafficking and microtubule organization. Here, we examine the cilia-related molecules and pathways disrupted in trisomy 21 and their in vivo phenotypic relevance. Utilizing ciliogenesis time course experiments, we reveal how Pericentrin, microtubule networks, and components of ciliary vesicles are reorganized for ciliogenesis in euploid cells. Early in ciliogenesis, chromosome 21 polyploidy results in elevated Pericentrin and microtubule networks away from the centrosome that ensnare MyosinVA and EHD1, blocking mother centriole uncapping that is essential for ciliogenesis. Ciliated trisomy 21 cells have persistent trafficking defects that reduce transition zone protein localization, which is critical for Sonic hedgehog signaling. Sonic hedgehog signaling is decreased and anticorrelates with Pericentrin levels in trisomy 21 primary mouse embryonic fibroblasts. Finally, we observe decreased ciliation in vivo. A mouse model of Down syndrome with elevated Pericentrin has fewer primary cilia in cerebellar granule neuron progenitors and thinner external granular layers. Our work reveals that elevated Pericentrin in trisomy 21 disrupts multiple early steps of ciliogenesis and creates persistent trafficking defects in ciliated cells. This pericentrosomal crowding results in signaling defects consistent with the neurological deficits found in individuals with Down syndrome.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    0
    Citations
    NaN
    KQI
    []