Dry-Processed, Binder-Free Holey Graphene Electrodes for Supercapacitors with Ultrahigh Areal Loadings

2016 
For commercial applications, the need for smaller footprint energy storage devices requires more energy to be stored per unit area. Carbon nanomaterials, especially graphene, have been studied as supercapacitor electrodes and can achieve high gravimetric capacities affording high gravimetric energy densities. However, most nanocarbon-based electrodes exhibit a significant decrease in their areal capacitances when scaled to the high mass loadings typically used in commercially available cells (∼10 mg/cm2). One of the reasons for this behavior is that the additional surface area in thick electrodes is not readily accessible by electrolyte ions due to the large tortuosity. Furthermore, the fabrication of such electrodes often involves complicated processes that limit the potential for mass production. Here, holey graphene electrodes for supercapacitors that are scalable in both production and areal capacitance are presented. The lateral surface porosity on the graphene sheets was created using a facile singl...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    59
    Citations
    NaN
    KQI
    []