Arsenite-induced downregulation of occludin in mouse lungs and BEAS-2B cells via the ROS/ERK/ELK1/MLCK and ROS/p38 MAPK signaling pathways.

2020 
Abstract Occludin is an important tight junction (TJ) protein in pulmonary epithelial cells. In this study, we identified changes in occludin in arsenic-induced lung injury in vivo and in vitro. Upon intratracheal instillation with arsenic trioxide (As2O3) at a daily dose of 30 μg/kg for 1 week, levels of occludin mRNA and protein expression decreased significantly in mouse lung tissue. Levels of occludin mRNA and protein expression in BEAS-2B cells were reduced upon exposure to As2O3 in a concentration- and time-dependent manner. In addition, exposure to As2O3 significantly increased expression of p-p38, p-ERK1/2, p-ELK1, and MLCK in mouse lung tissue and BEAS-2B cells. Treatment with As2O3 induced oxidative stress in mouse lung tissue and BEAS-2B cells. In BEAS-2B cells, exposure to As2O3 reduced transepithelial resistance, which was partially restored with N-acetyl-cysteine (NAC) treatment. Reduced expression of occludin mRNA and protein induced by As2O3 was entirely restored with NAC and resveratrol. However, SB203580, PD98059, and ML-7 partially blocked As2O3-induced occludin reduction in BEAS-2B cells. These results indicate that As2O3 inhibits occludin expression in vivo and in vitro at least partially via the ROS/ERK/ELK1/MLCK and ROS/p38 MAPK signaling pathways.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    3
    Citations
    NaN
    KQI
    []