Finite element analysis of the graft stresses after anterior cruciate ligament reconstruction

2021 
OBJECTIVE To explore the stress distribution characteristics of the graft after anterior cruciate ligament (ACL) reconstruction, so as to provide theoretical reference for the surgical plan of ACL reconstruction. METHODS Based on 3D MRI and CT images, finite element models of the uninjured knee joint and knee joint after ACL reconstruction were established in this study. The uninjured knee model included femur, tibia, fibula, medial collateral ligament, lateral collateral ligament, ACL and posterior cruciate ligament. The ACL reconstruction knee model included femur, tibia, fibula, medial collateral ligament, lateral collateral ligament, ACL graft and posterior cruciate ligament. Linear elastic material properties were used for both the uninjured and ACL reconstruction models. The elastic modulus of bone tissue was set as 17 GPa and Poisson' s ratio was 0.36. The material properties of ligament tissue and graft were set as elastic modulus 390 MPa and Poisson's ratio 0.4. The femur was fixed as the boundary condition, and the tibia anterior tension of 134 N was applied as the loading condition. The stress states of the ACL of the intact joint and the ACL graft after reconstruction were solved and analyzed, including tension, pressure, shear force and von Mises stress. RESULTS The maximum compressive stress (6.34 MPa), von Mises stress (5.9 MPa) and shear stress (1.83 MPa) of the reconstructed ACL graft were all at the anterior femoral end. It was consistent with the position of maximum compressive stress (8.77 MPa), von Mises stress (8.88 MPa) and shear stress (3.44 MPa) in the ACL of the intact knee joint. The maximum tensile stress of the graft also appeared at the femoral end, but at the posterior side, which was consistent with the position of the maximum tensile stress of ACL of the uninjured knee joint. More-over, the maximum tensile stress of the graft was only 0.88 MPa, which was less than 2.56 MPa of ACL of the uninjured knee joint. CONCLUSION The maximum compressive stress, von Mises stress and shear stress of the ACL graft are located in the anterior femoral end, and the maximum tensile stress is located in the posterior femoral end, which is consistent with the position of the maximum tensile stress of the ACL of the uninjured knee joint. The anterior part of ACL and the graft bore higher stresses than the posterior part, which is consistent with the biomechanical characteristics of ACL.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []