Local Quantum Criticality in an Iron-Pnictide Tetrahedron

2012 
Motivated by the close correlation between transition temperature (Tc) and the tetrahedral bond angle of the As-Fe-As layer observed in the iron-based superconductors, we study the interplay between spin and orbital physics of an isolated iron-arsenide tetrahedron embedded in a metallic environment. Whereas the spin-Kondo effect is suppressed to low temperatures by Hund’s coupling, the orbital degrees of freedom are expected to quantum mechanically quench at high temperatures, giving rise to an overscreened, non-Fermi liquid ground state. Translated into a dense environment, this critical state may play an important role in the superconductivity of these materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []