Thermal performance curves for aerobic scope in a tropical fish (Lates calcarifer): flexible in amplitude but not breadth.

2021 
Aerobic metabolic scope is a popular metric to estimate the capacity for temperature-dependent performance in aquatic animals. Despite this popularity, little is known of the role of temperature acclimation and variability in shaping the breadth and amplitude of the thermal performance curve for aerobic scope. If daily thermal experience can modify the characteristics of the thermal performance curve, interpretations of aerobic scope data from the literature may be misguided. Here, tropical barramundi (Lates calcarifer) were acclimated for ∼4 months to cold (23℃), optimal (29℃) or warm (35℃) conditions, or to a daily temperature cycle between 23 and 35℃ (with a mean of 29℃). Measurements of aerobic scope were conducted every 3-4 weeks at three temperatures (23℃, 29℃ and 35℃), and growth rates were monitored. Acclimation to constant temperatures caused some changes in aerobic scope at the three measurement temperatures via adjustments in standard and maximal metabolic rates, and growth rates were lower in the 23℃-acclimated group compared with all other groups. The metabolic parameters and growth rates of the thermally variable group remained similar to those of the 29℃-acclimated group. Thus, acclimation to a variable temperature regime did not broaden the thermal performance curve for aerobic scope. We propose that aerobic scope thermal performance curves are more plastic in amplitude rather than breadth, and that the metabolic phenotype of at least some fish may be more dependent on the mean daily temperature rather than on the daily temperature range.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []