Studies On Growth And Physical Properties Of Certain Nonlinear Optical And Ferroelectric Crystals

2006 
Nonlinear optics and ferroelectrics have been recognized for several decades as promising fields with important applications in the area of opto-electronics, photonics, memory devices, etc. High performance electro-optical switching elements for telecommunications and optical information processing are based on the material properties. Hence, there is always a continuous search for new and better materials. In this thesis we have investigated the growth and physical properties of four crystals viz. two NLO and two ferroelectric crystals. This thesis consists of eight chapters. The first chapter gives an overview of historical perspectives of nonlinear optical phenomenon, ferroelectricity and materials developed therein. The second chapter gives a brief description of the underlying theories of crystal growth, nonlinear optics and ferroelectricity. A major portion of this chapter consists of gist of the earlier work carried out on compounds of our interest viz. urea L-malic acid, sodium p-nitrophenolate dihydrate, glycine phosphite and lithium niobate. Synthesis, growth, crystal structure details and some physical properties of these materials are briefed. The third chapter describes the experimental techniques needed to grow as well as characterize these crystals. The experiments are performed on single crystals grown in the laboratory using the solution growth setup and Czochralski crystal puller. These growth units are described in detail. Preliminary characterization techniques like powder Xray diffraction, optical transmission, scanning electron microscopy, Vickers and Knoop hardness are described briefly. Various experimental methods viz. dielectric, polarization reversal, photoacoustic spectroscopy and laser induced damage for characterizing the grown crystals are explained. Urea L-malic acid (ULMA) is a new NLO organic material which is reported to exhibit second harmonic efficiency three times that of the widely used inorganic crystal, KDP. Hence, this material is selected for detailed investigation and the results obtained are discussed in chapter 4. This chapter contains details of single crystal growth and characterization of ULMA. The crystals are grown by slow cooling technique. The complete morphology of the crystal is evaluated using optical goniometry. The grown crystals are characterized for their optical and thermal properties. The defect content in the grown crystal is evaluated by chemical etching. As the surface damage of the crystal by high power lasers limits its performance in NLO applications, a detailed laser induced damage studies are performed on ULMA. Both single shot and multiple shot damage threshold values for 1064 nm and 532 nm laser radiation are determined and correlated with the mechanical hardness. In addition, the thermal diffusivity and thermal conductivity of ULMA along various crystallographic orientations are evaluated using laser induced photoacoustic spectroscopy and the results are interpreted in terms of crystal bonding environment. Another NLO crystal taken up for…
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []