Kinetic Monte Carlo simulations of boron activation in implanted Si under laser thermal annealing

2014 
We investigate the correlation between dopant activation and damage evolution in boron-implanted silicon under excimer laser irradiation. The dopant activation efficiency in the solid phase was measured under a wide range of irradiation conditions and simulated using coupled phase-field and kinetic Monte Carlo models. With the inclusion of dopant atoms, the presented code extends the capabilities of a previous version, allowing its definitive validation by means of detailed comparisons with experimental data. The stochastic method predicts the post-implant kinetics of the defect-dopant system in the far-from-equilibrium conditions caused by laser irradiation. The simulations explain the dopant activation dynamics and demonstrate that the competitive dopant-defect kinetics during the first laser annealing treatment dominates the activation phenomenon, stabilizing the system against additional laser irradiation steps.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    14
    Citations
    NaN
    KQI
    []