The insulin‐PI3K‐Rac1 axis contributes to terminal adipocyte differentiation through regulation of actin cytoskeleton dynamics

2020 
Adipocyte differentiation is accompanied by a pronounced change in the actin cytoskeleton characterized by the reorganization of filamentous (F)-actin stress fibers into cortical F-actin structures. We previously showed that depolymerization of F-actin stress fibers induced by inactivation of RhoA-ROCK (Rho-associated kinase) signaling acts as a trigger for adipocyte differentiation. The relevance and underlying mechanism of the formation of cortical F-actin structures from depolymerized actin during adipocyte differentiation have remained unclear, however. We have now examined the mechanistic relation between actin dynamics and adipogenic induction. Transient exposure to the actin-depolymerizing agent latrunculin A (LatA) supported the formation of adipocyte-associated cortical actin structures and the completion of terminal adipocyte differentiation in the presence of insulin, whereas long-term exposure to LatA prevented such actin reorganization as well as terminal adipogenesis. Moreover, these effects of insulin were prevented by inhibition of phosphatidylinositol 3-kinase (PI3K)-Rac1 signaling and the actin-related protein 2/3 (Arp2/3) complex which is a critical component of the cortical actin networks. Our findings thus suggest that the insulin-PI3K-Rac1 axis leads to the formation of adipocyte-associated cortical actin structures which is essential for the completion of adipocyte differentiation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []