Control of bond-strain-induced electronic phase transitions in iron perovskites.

2013 
Unusual electronic phase transitions in the A-site ordered perovskites LnCu3Fe4O12 (Ln: trivalent lanthanide ion) are investigated. All LnCu3Fe4O12 compounds are in identical valence states of Ln3+Cu2+3Fe3.75+4O12 at high temperature. LnCu3Fe4O12 with larger Ln ions (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb) show an intersite charge transfer transition (3Cu2+ + 4Fe3.75+ → 3Cu3+ + 4Fe3+) in which the transition temperature decreases from 360 to 240 K with decreasing Ln ion size. In contrast, LnCu3Fe4O12 with smaller Ln ions (Ln = Dy, Ho, Er, Tm Yb, Lu) transform into a charge-disproportionated (8Fe3.75+ → 5Fe3+ + 3Fe5+) and charge-ordered phase below ∼250–260 K. The former series exhibits metal-to-insulator, antiferromagnetic, and isostructural volume expansion transitions simultaneously with intersite charge transfer. The latter shows metal-to-semiconductor, ferrimagnetic, and structural phase transitions simultaneously with charge disproportionation. Bond valence calculation reveals that the metal–oxygen bond str...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    37
    Citations
    NaN
    KQI
    []