Strong system-bath coupling induces negative differential thermal conductance and heat amplification in nonequilibrium two-qubit systems

2019 
Quantum heat transfer is analyzed in nonequilibrium two-qubits systems by applying the nonequilibrium polaron-transformed Redfield equation combined with full counting statistics. Steady state heat currents with weak and strong qubit-bath couplings are clearly unified. Within the two-terminal setup, the negative differential thermal conductance is unraveled with strong qubit-bath coupling and finite qubit splitting energy. The partially strong spin-boson interaction is sufficient to show the negative differential thermal conductance. Based on the three-terminal setup, that two-qubits are asymmetrically coupled to three thermal baths, a giant heat amplification factor is observed with strong qubit-bath coupling. Moreover, the strong interaction of either the left or right spin-boson coupling is able to exhibit the apparent heat amplification effect.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    12
    Citations
    NaN
    KQI
    []