Role of substrate-product frustration on enzyme functional dynamics

2019 
: Natural enzymes often have enormous catalytic power developed by evolution. Revealing the underlying physical strategy used by enzymes to achieve high catalysis efficiency is one of the central focuses in the field of biological physics. Our recent work demonstrated that multisubstrate enzymes can utilize steric frustration encountered in the substrate-product cobound complex to overcome the bottleneck of the enzymatic cycle [W. Li et al., Phys. Rev. Lett. 122, 238102 (2019)10.1103/PhysRevLett.122.238102]. However, the key atomic-level interactions by which the steric frustration contributes to the enzymatic cycle remain elusive. In this work we study the microscopic mechanism for the role of the substrate-product frustration on the key physical steps in the enzymatic cycle of adenylate kinase (AdK), a multisubstrate enzyme catalyzing the reversible phosphoryl transfer reaction ATP+AMP⇋ADP+ADP. By using atomistic molecular dynamics simulations with enhanced sampling, we showed that the competitive interactions from the phosphate groups of the substrate ATP and product ADP in the ATP-ADP cobound complex of the AdK lead to local frustration in the binding pockets. Such local frustration disrupts the hydrogen bond network around the binding pockets, which causes lowered barrier height for the opening of the enzyme conformations and expedited release of the bottleneck product ADP. Our results directly demonstrated from the atomistic level that the local frustration in the active sites of the enzyme can be utilized to facilitate the key physical steps of the enzymatic cycle, providing numerical evidence to the predictions of the previous theoretical work.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    4
    Citations
    NaN
    KQI
    []