Yield Variation among Clones of Lowbush Blueberry as a Function of Genetic Similarity and Self-compatibility

2010 
Two types of field hand crosses (pairwise touching-neighbor and a full 5 x 5 diallel, Griffing's Model 2, Method 3) were performed in combination with genetic similarity estimations of mating partners using expressed sequence tag-polymerase chain reaction molecular markers to elucidate genetic factors underlying yield variations among clones (genotypes) of lowbush blueberry (Vaccinium angustifolium) in two managed fields in Maine. Genetic similarity values for touching pairs ranged from 0.308 to 0.765. Based on pairwise touching-neighbor crosses, no evidence was found for yield being affected by genetic similarity. However, self-fertility of clones was a significant positive predictor of outcross yields. The calculation of lethal equivalents, derived from selfing to outcross ratios, showed a large range in genetic load among clones and a higher average load than that previously reported in the related highbush blueberry (V. corymbosum). The diallel experiment revealed significant general and specific combining ability for all three post-pollination yield traits measured (proportion fruit set, mean mature seed per pollination, and mean berry weight per pollination). Narrow-sense heritability estimates for all three yield traits were moderately high (h2 = 0.58, 0.46, and 0.56, respectively). It is concluded that phenotypically screening for selfcompatible clone yield attributes could be useful in identifying germplasm candidates for breeding and propagation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    26
    Citations
    NaN
    KQI
    []