Properties of ZnO Thin Films Codoped with Lithium and Phosphorus

2014 
The properties of ZnO thin films codoped with lithium and phosphorus have been characterized. The films were deposited from high-purity ZnO and Li3PO4 solid targets onto c-plane sapphire substrates by radiofrequency (RF) magnetron sputtering. A substrate temperature of 900°C was determined as optimum for depositing undoped ZnO films with background electron concentration of 9.9 × 1015 cm−3 as the buffer layer on the sapphire substrate. Postdeposition annealing was carried out using rapid thermal processing in O2 at temperatures ranging from 500°C to 1000°C for 3 min. Analyses performed using low-temperature photoluminescence spectroscopy measurements revealed luminescence peaks at 3.356 eV, 3.307 eV, 3.248 eV, and 3.203 eV at 12 K for the codoped samples. X-ray diffraction 2θ-scans showed a single peak at about 34.4° with full-width at half-maximum of about 0.09°. Hall-effect measurements revealed initial p-type conductivities, but these were unstable and toggled between p-type and n-type over time with Hall concentrations that varied between 2.05 × 1013 cm−3 and 2.89 × 1015 cm−3. The fluctuation in the carrier type could be due to lateral inhomogeneity in the hole concentration caused by stacking faults in the films. An additional cause could be the small Hall voltages in the measurements, which could be significantly impacted by even small spikes in signal noise inherent in the measurements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    5
    Citations
    NaN
    KQI
    []