Computational fluid dynamics as a tool for urban drainage system analysis: a review of applications and best practice

2008 
Computational Fluid Dynamics (CFD) can be applied to gain insights into most fluid processes and associated phenomena and so presents potential to add value in the analysis of urban drainage systems. This paper presents a review of CFD studies carried out in this field, with the objective of developing an appreciation of how and where it can be applied. Existing work has tended to focus around the analysis of four types of urban drainage structure, including Combined Sewer Overflows (CSOs), storage and attenuation systems, stormwater sediment interceptors and sewerage conveyance structures. Within the respective studies, the prediction of flowfields, particulate behaviour, water surface profiles and Residence Time Distributions (RTDs) are found to form the main focus, and as such, these are considered in most detail in the paper. It is concluded that CFD presents a number of opportunities in urban drainage system analysis, and that the scope of this opportunity will further develop as both computational hardware and software resources become more advanced.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    16
    Citations
    NaN
    KQI
    []