Iron oxide nanoparticles modified with silanes for hyperthermia applications

2018 
Fe3O4-HDTMS nanocomposites were prepared and studied using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy, X-ray analysis, thermal analysis (TGA), dynamic light scattering analysis, magnetic and specific loss power (SLP) measurements. FTIR results showed that during the modification, the formation of the silane coating occurs due to the appearance of the magnetite–O–Si–R bond. According to TGA results, the mass loss in the range of temperatures 410–650 °C is due to the destruction of covalent bonds Fe–O–Si. The Si–O–R coating leads to the decrease in the absolute value of the effective saturation magnetization due to the presence of a non-magnetic phase (coating) in the sample, but the coercivity increases with the coating thickness due to higher effective values of the magnetic anisotropy of the magnetostrictive nature. The thermal response of NP-based dispersions in silicone and oleic acid was shown that SLP value is higher for magnetic material dispersions in Lipiodol and oleic acid compared to silicone-based dispersions. This can be explained by the contribution of both Neel and Brownian relaxation processes. However, in the case of silicone-based dispersion, Brownian relaxation is negligible because of NP immobilization in viscous silicone matrix. As it is to the effect of coating on SLP, this is clearly evident in the case of silicone dispersions. The study of the heating ability of dispersions based on HDTMS-modified Fe3O4 NPs showed that the coating does not significantly decrease the SLP values.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    9
    Citations
    NaN
    KQI
    []