Mechanical Performance of Polyiosoprene Copolymer Anion Exchange Membranes by Varying Crosslinking Methods

2015 
Anion exchange membranes (AEM) are polymer electrolytes that facilitate ion transport in alkaline fuel cells and electrochemical devices. Fabrication of mechanically durable AEMs with high ionic conductivity is a challenge. Here, a copolymer of isoprene and vinylbenzyl trimethylammonium and a terpolymer of isoprene, vinylbenzyl trimethylammonium and styrene were crosslinked by various methods, and properties, including conductivity and mechanical strength, were investigated at dry and saturated conditions. Polymer chemistry and degree of crosslinking significantly influenced conductivity, swelling, and mechanical properties. The terpolymer had a higher proportion of vinylbenzyl trimethylammonium units increasing the ion exchange capacity (IEC), but membranes could still be rendered insoluble by crosslinking. The higher IEC of the terpolymer resulted in higher chloride conductivity, 20–75 mS/cm at 50◦C and 95%RH, compared to 4–17 mS/cm for the copolymer at the same conditions. At dry conditions films were stiff, having Young’s moduli between 100–740 MPa, but hydration caused severe softening, reducing moduli by 1–2 orders of magnitude. The severe softening effect of hydration was confirmed by dynamic mechanical analysis. The AEMs studied did not have adequate mechanical durability at hydrated conditions, additional work is needed to determine polymer chemistries and crosslinking methods that will produce robust AEMs for long-term use in fuel cells and electrochemical devices. © The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.0471504jes] All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    8
    Citations
    NaN
    KQI
    []