Bidirectional Modulation of Contact Thermal Resistance between Boron Nitride Nanotubes from a Polymer Interlayer.

2021 
Enhancing the thermal conductivity of polymer composites could improve their performance in applications requiring fast heat dissipation. While significant progress has been made, a long-standing issue is the contact thermal resistance between the nanofillers, which could play a critical role in the composite thermal properties. Through systematic studies of contact thermal resistance between individual boron nitride nanotubes (BNNTs) of different diameters, with and without a poly(vinylpyrrolidone) (PVP) interlayer, we show that the contact thermal resistance between bare BNNTs is largely determined by reflection of ballistic phonons. Interestingly, it is found that a PVP interlayer can either enhance or reduce the contact thermal resistance, as a result of converting the ballistic phonon dominated transport into diffusion through the PVP layer. These results disclose a previously unrecognized physical picture of thermal transport at the contact between BNNTs, which provides insights into the design of high thermal conductivity BNNT-polymer composites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []