Hydrogen production in a light-driven photoelectrochemical cell

2014 
Conversion of organic matter to hydrogen in a microbial electrolysis cell (MEC) is one of promising ways for hydrogen generation. However, the lack of efficient and cost-effective cathode catalysts and the need of additional electricity input make it less attractive. To resolve these problems, in this work a light-driven microbial photoelectrochemical cell (MPC) system, which consists of a TiO2 photocathode and a microbial anode, was constructed to utilize light energy and harvest electrons respectively. In this MPC system, continuous hydrogen production was achieved without external applied voltage under UV irradiation, and it had worked well continuously over 200h in a batch-fed mode under light illumination. An average hydrogen production rate of 3.5μmol/h was obtained. The results are useful for designing new hydrogen-harvesting systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    55
    Citations
    NaN
    KQI
    []