Transcriptome sequencing and comparative analysis of differentially-expressed isoforms in the roots of Halogeton glomeratus under salt stress

2018 
Abstract Although Halogeton glomeratus ( H . glomeratus ) has been confirmed to have a unique mechanism to regulate Na + efflux from the cytoplasm and compartmentalize Na + into leaf vacuoles, little is known about the salt tolerance mechanisms of roots under salinity stress. In the present study, transcripts were sequenced using the BGISEQ-500 sequencing platform (BGI, Wuhan, China). After quality control, approximately 24.08 million clean reads were obtained and the average mapping ratio to the reference gene was 70.00%. When comparing salt-treated samples with the control, a total of 550, 590, 1411 and 2063 DEIs were identified at 2, 6, 24 and 72 h, respectively. Numerous differentially-expressed isoforms that play important roles in response and adaptation to salt condition are related to metabolic processes, cellular processes, single-organism processes, localization, biological regulation, responses to stimulus, binding, catalytic activity and transporter activity. Fifty-eight salt-induced isoforms were common to different stages of salt stress; most of these DEIs were related to signal transduction and transporters, which maybe the core isoforms regulating Na + uptake and transport in the roots of H . glomeratus . The expression patterns of 18 DEIs that were detected by quantitative real-time polymerase chain reaction were consistent with their respective changes in transcript abundance as identified by RNA-Seq technology. The present study thoroughly explored potential isoforms involved in salt tolerance on H . glomeratus roots at five time points. Our results may serve as an important resource for the H . glomeratus research community, improving our understanding of salt tolerance in halophyte survival under high salinity stress.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    15
    Citations
    NaN
    KQI
    []