Thermalization induced by quantum scattering

2020 
We use quantum scattering theory to study a fixed quantum system Y subject to collisions with massive particles X described by wave-packets. We derive the scattering map for system Y and show that the induced evolution crucially depends on the width of the incident wave-packets compared to the level spacing in Y . If Y is non-degenerate, sequential collisions with narrow wave-packets cause Y to decohere. Moreover, an ensemble of narrow packets produced by thermal effusion causes Y to thermalize. On the other hand, broad wave-packets can act as a source of coherences for Y , even in the case of an ensemble of incident wave-packets given by the effusion distribution, preventing thermalization. We illustrate our findings on several simple examples and discuss the consequences of our results in realistic experimental situations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []