A method of calculating the discrete secondary structures of globular proteins

1991 
: The model of formation of alpha-helices and beta-structures determined by joint action of the three elements: N-terminal, internal and C-terminal fragments are presented. Algorithm for calculation of their localization in a given amino acid sequence was constructed on the base of this model. The preference of the fragments of the amino acid sequence to a definite type of the secondary structure was estimated on the base of corresponding average values of linear discriminant functions dsk (s = alpha, beta, k = N, in, C). The latter were constructed in the previous paper on the base of the revealed significant characteristics. These integral characteristics are used for calculating the localisation of discrete secondary structures. The total prediction for 3 states (alpha, beta, c) given 71% correctly predicted residues (for 4 states alpha, beta, c, t) 62% for the training set, consisting of 72 proteins. For the control set (15 proteins) the accuracy of prediction is about 65%. The essential advantages of this method are: 1) the possibility to localize the discrete secondary structures; 2) the high accuracy of prediction of long secondary structures (for alpha-helices approximately 90%, for beta-structures approximately 80%), which is important for the determination of the protein folding. The influence of mutation on the secondary structure of proteins was investigated. The anormally high stability of the secondary structures of immunoglobulins to mutations was revealed. This probably results from the selection during evolution of such variants of amino acid sequences, which are able to provide the functional variability of antigenic determinants, but keep invariant the tertially structure of protein.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    6
    Citations
    NaN
    KQI
    []