Analysis of the Error in Retrievals of Aerosol Optical Properties from Sunphotometer Measurements of CARSNET Due to a Variety of Objective Factors

2016 
In situ observation of the aerosol optical properties is important to the validations of satellite and modeling results; however, the operational measurements can be affected by some objective factors. An experiment study has been performed in order to analyze the error in retrievals of aerosol optical properties from sunphotometer measurements caused by a variety of in situ objective factors. The standard instrument relative error analysis method was used to determine the relative error of aerosol optical depth (AOD) and Angstrom exponent (AE) under the effects of five factors: spider web inside the collimator (F1); collimator bending (F2); dust inside the optical head (F3); incrustation scale inside the optical head (F4); and dust and incrustation scale inside the optical head (F5). The results showed that the five factors caused error for AOD retrieved at 1020, 870, 670 and 440 nm, with the maximum error occurring at 870 nm due to the more sensitive measurement signals. The error ranges of AOD derived from the direct solar measurements in the four bands were −0.34%–8.77%, −6.22%–9.68%, −0.05%–2.52%, −0.96%–3.48% and 5.42%–13.38% for F1, F2, F3, F4 and F5, respectively. The maximum error occurred under the influence of F5 with an average error value of 10%, while the minimum occurred owing to F3 with an average error value of 1%. All of the AEs retrieved from the experimental instruments were smaller than that from the reference instrument. The AE error values were 15.19%, 25.57%, 4.56%, 4.41% and 8.83% for F1, F2, F3, F4 and F5, respectively. The average AE retrieval error value was 11.7%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    8
    Citations
    NaN
    KQI
    []