On interaction of arginine, cysteine and guanine with a nano-TiO2 cluster

2020 
Abstract Nanoscopic properties of TiO2 augmented with its physicochemical properties and biocompatibility make it a material interest in the biomedical field. Efficient methods to design of such materials require a thorough understanding of associated nano-bio interfaces. In the present study, density functional theory calculations were performed to study the interactions of arginine, cysteine and guanine with a nano-TiO2 cluster. Different configurations were sampled for the adsorption of arginine, cysteine and guanine to probe the nano-bio interface via the interaction of various functional groups present on biomolecules. Adsorption energies for arginine, cysteine and guanine were in a range of -25.0 to -57.6 kcal/mol, -12.1 to -29.6 kcal/mol and -45.6 to -58.7 kcal/mol, respectively. From the change in adsorption energies and free energies, interaction of amino acids with carboxylic (-COOH) and amine (-NH2) groups while the interaction of the nucleobase via O bonded to C and N of purine ring was found to be essential for thermodynamically stable and energetically favorable states. Density of states analysis also disclosed the prominent interactions of the biomolecules with the nano-TiO2 cluster. Decrease in band gaps on adsorption of the biomolecules was a pertinent phenomenon indicating the strong chemical interactions of the biomolecules with the nanoscopic TiO2 chosen for analysis in this study.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    1
    Citations
    NaN
    KQI
    []