Mechanisms of granule enzyme secretion from permeabilized guinea pig eosinophils. Dependence on Ca2+ and guanine nucleotides.

1991 
The mechanisms of granule protein secretion have been studied in streptolysin-O-permeabilized guinea pig eosinophils. Secretion of the granule-associated enzyme N-acetyl-beta-D-glucosaminidase was dependent on both Ca2+ and a nonhydrolyzable GTP analogue, guanosine-59-O-(3-thiotriphosphate) (GTP-gamma-S), suggesting roles for both calcium and GTP binding proteins. Secretion was maximal by 7 min, and varied between 35 and 60% of the total enzyme activity. Other GTP analogues also elicited secretion, with rank order GTP-gamma-S greater than guanylyl-imidophosphate greater than guanylyl (beta-gamma-methylene-diphosphate). Unrelated nucleotide triphosphates showed little or no effect confirming the specificity of the G protein. Transmission electronmicroscopy confirmed that permeabilization alone did not result in loss of granules and that exocytosis was dependent on the addition of the effectors, Ca2+ and GTP-gamma-S. ATP enhanced the magnitude of the secretory response and also enhanced the effective affinities for both Ca2+ and GTP-gamma-S. In the presence of 10(-5) M GTP-gamma-S the ED50 (Ca2+) was pCa 5.57 +/- 0.04 (2.69 microM) in the absence of ATP and declined to pCa 6.16 +/- 0.03 (0.69 microM) in the presence of ATP (p less than 0.0001). Furthermore, ATP served to restore responsiveness in cells that had been rendered refractory by delaying stimulation after permeabilization. Pretreatment with PMA (an activator of PKC) inhibited the induction of a refractory state, whereas inhibition of PKC partially countered the ability of ATP to restore responsiveness, both observations pointing to a requirement for a specific component of the secretory mechanism to be in a phosphorylated state in order to condone the secretion process. These observations show that secretory mechanisms in eosinophils are similar to those in other myeloid cells, in particular neutrophils and mast cells, although the time course of secretion is more protracted.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    37
    Citations
    NaN
    KQI
    []