Persistence of turbulent flow in microchannels at very low Reynolds numbers

2011 
A fully resolved numerical simulation of a turbulent microchannel flow, with uniformly spaced two-dimensional obstruction elements mounted at the wall and normal to the flow direction, was carried out at a very low Reynolds number of Re ≃ 970 based on the centerline velocity and the microchannel height. Employing the lattice Boltzmann numerical technique, all energetic scales of turbulence were resolved with about 19 × 106 grid points (1261 × 129 × 128 in the x 1, x 2, and x 3 directions). The simulated results confirm the self-maintenance of turbulence at such a low Reynolds number. Turbulence persisted over more than 1,000 turnover times, which was sufficiently long to prove its self-maintenance. These findings support the conjecture that turbulence developing in microchannels having rough walls can not only be initiated but also maintained at very low Reynolds numbers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    4
    Citations
    NaN
    KQI
    []