Comparison of the interaction between lactoferrin and isomeric drugs

2017 
Abstract The binding properties of pentacyclic triterpenoid isomeric drugs, i . e . ursolic acid (UA) and oleanolic acid (OA), to bovine lactoferrin (BLF) have been studied by molecule modeling, fluorescence spectroscopy, UV–visible absorbance spectroscopy and infrared spectroscopy (IR). Molecular docking, performed to reveal the possible binding mode or mechanism, suggested that hydrophobic interaction and hydrogen bonding play important roles to stabilize the complex. The results of spectroscopic measurements showed that the two isomeric drugs both strongly quenched the intrinsic fluorescence of BLF through a static quenching procedure although some differences between UA and OA binding strength and non-radiation energy transfer occurred within the molecules. The number of binding sites was 3.44 and 3.10 for UA and OA, respectively, and the efficiency of Forster energy transfer provided a distance of 0.77 and 1.21 nm for UA and OA, respectively. The conformation transformation of BLF affected by the drugs conformed to the “all-or-none” pattern. In addition, the changes of the ratios of α-helices, β-sheets and β-turns of BLF during the process of the interaction were obtained. The results of the experiments in combination with the calculations showed that there are two modes of pentacyclic triterpenoid binding to BLF instead of one binding mode only governed by the principle of the lowest bonding energy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    11
    Citations
    NaN
    KQI
    []