Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus

2020 
Mammalian circadian behaviors are orchestrated by the suprachiasmatic nucleus (SCN) in the ventral hypothalamus, but the number of SCN cell types and their functional roles remain unclear. We have used single-cell RNA-sequencing to identify the basic cell types in the mouse SCN and to characterize their circadian and light-induced gene expression patterns. We identified eight major cell types, with each type displaying a specific pattern of circadian gene expression. Five SCN neuronal subtypes, each with specific combinations of markers, differ in their spatial distribution, circadian rhythmicity and light responsiveness. Through a complete three-dimensional reconstruction of the mouse SCN at single-cell resolution, we obtained a standardized SCN atlas containing the spatial distribution of these subtypes and gene expression. Furthermore, we observed heterogeneous circadian gene expression between SCN neuron subtypes. Such a spatiotemporal pattern of gene regulation within the SCN may have an important function in the circadian pacemaker. Wen et al. combined single-cell RNA-seq and spatiotemporal analysis techniques to characterize the basic cell types in the mouse SCN, identifying their spatial distributions and circadian and light-induced gene expression patterns.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    68
    Citations
    NaN
    KQI
    []