Supramolecular Tuning of H 2 S Release fromAromatic Peptide Amphiphile Gels: Effect of Core Unit Substituents

2019 
H2S is a gasotransmitter with several physiological roles, but its reactivity and short half-life in biological media make its controlled delivery difficult. For biological applications of the gas, hydrogels have the potential to deliver H2S with several advantages over other donor systems, including localized delivery, controlled release rates, biodegradation, and variable mechanical properties. In this study, we designed and evaluated peptide-based H2S-releasing hydrogels with controllable H2S delivery. The hydrogels were prepared from short, self-assembling aromatic peptide amphiphiles (APAs), functionalized on their N-terminus with S-aroylthiooximes (SATOs), which release H2S in response to a thiol trigger. The APAs were studied both in solution and in gel forms, with gelation initiated by addition of CaCl2. Various substituents were included on the SATO component of the APAs in order to evaluate their effects on self-assembled morphology and H2S release rate in both the solution and gel phases. Trans...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    14
    Citations
    NaN
    KQI
    []