Specific inhibitor of human immunodeficiency virus proteinase prevents the cytotoxic effects of a single-chain proteinase dimer and restores particle formation.

1992 
Abstract The active form of the retroviral proteinase (PR) is a homodimer of monomeric subunits expressed as integral parts of the viral gag-pol precursor polyproteins, and dimerization of polyproteins is presumed to be important for regulation of PR activity. Expression of a single-chain dimer of the human immunodeficiency virus (HIV) type 1 PR as a component of the viral polyprotein has been shown to prevent particle assembly and viral infectivity (H.-G. Krausslich, Proc. Natl. Acad. Sci. USA 88:3213-3217, 1991). Ro31-8959, a specific inhibitor of HIV PR, blocked proteolysis of polyproteins containing either wild-type or single-chain dimer PR at the same inhibitor concentration. Different inhibitor concentrations gave three phenotypic effects for the linked PR: at a concentration of 10 nM, cytotoxicity was prevented yet viral polyproteins were almost completely processed and no particles were released. The majority of HIV capsid proteins was found in the soluble cytoplasmic fraction, whereas at a concentration of 1 microM inhibitor most HIV gag proteins were associated with an insoluble fraction. Release of particles consisting of partially processed polyproteins was observed at 100 nM Ro31-8959, and polyprotein processing was blocked at 10 microM. Particles derived from the dimer-containing provirus were noninfectious independently of the inhibitor concentration. Production of infectious HIV after transfection of wild-type provirus was abolished at 100 nM and markedly reduced at 10 nM Ro31-8959.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    53
    Citations
    NaN
    KQI
    []