High-accuracy longitudinal position measurement using self-accelerating light

2021 
Radially self-accelerating light exhibits an intensity pattern that describes a spiraling trajectory around the optical axis as the beam propagates. In this article, we show in simulation and experiment how such beams can be used to perform a high-accuracy distance measurement with respect to a reference using simple off-axis intensity detection. We demonstrate that generating beams whose intensity pattern simultaneously spirals with fast and slow rotation components enables a distance measurement with high accuracy over a broad range, using the high and low rotation frequency, respectively. In our experiment, we achieve an accuracy of around 2~$\mu$m over a longitudinal range of more than 2~mm using a single beam and only two quadrant detectors. As our method relies on single-beam interference and only requires a static generation and simple intensity measurements, it is intrinsically stable and might find applications in high-speed measurements of longitudinal position.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    1
    Citations
    NaN
    KQI
    []