Optimal Solving of Constrained Path-Planning Problems with Graph Convolutional Networks and Optimized Tree Search

2021 
Learning-based methods are growing prominence for planning purposes. However, there are very few approaches for learning-assisted constrained path-planning on graphs, while there are multiple downstream practical applications. This is the case for constrained path-planning for Autonomous Unmanned Ground Vehicles (AUGV), typically deployed in disaster relief or search and rescue applications. In off-road environments, the AUGV must dynamically optimize a source-destination path under various operational constraints, out of which several are difficult to predict in advance and need to be addressed on-line. We propose a hybrid solving planner that combines machine learning models and an optimal solver. More specifically, a graph convolutional network (GCN) is used to assist a branch and bound (B&B) algorithm in handling the constraints. We conduct experiments on realistic scenarios and show that GCN support enables substantial speedup and smoother scaling to harder problems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    0
    Citations
    NaN
    KQI
    []