Improvement of Interfacial Wetting and Mechanical Electrical Properties of Cu-B/ sintered-carbon Composites

2021 
By copper-alloying with different content of B element forming binary alloy to improve the bonding force between carbon and copper, and the Cu-B/sintered-carbon composites were prepared successfully by gas pressure impregnation. The mechanism of boron on interface enhancement, mechanical and electrical properties of composites was studied. The results showed that the mechanical strength and electrical conductivity were proportion to the boron content, while the contact angle was in inverse proportion to the B content. When the doping amount was 2.5wt%, the flexural strength and electrical conductivity were increased by 65% and 54% respectively compared with composites without modification and the contact angle decreased to 21°. The reason was that the boron carbide with moderate thickness at the interface could enhance the Cu/C interfacial bonding by transforming from physical bonding to chemical bonding. This study proves that the moderate addition of boron can improve the wettability of C/Cu system, which resulting in the improvement of mechanical and electrical properties of Cu-B/ sintered-carbon composites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []