Expression pattern of immunoglobulin superfamily members in the silkworm, Bombyx mori.

2014 
Abstract Immunoglobulin superfamily (IgSF) proteins are involved in cell adhesion, cell communication and immune functions. In this study, 152 IgSF genes containing at least one immunoglobulin (Ig) domain were predicted in the Bombyx mori silkworm genome. Of these, 145 were distributed on 25 chromosomes with no genes on chromosomes 16, 18 and 26. Multiple sequence alignments and phylogenetic evolution analysis indicated that IgSFs evolved rapidly. Gene ontology (GO) annotation indicated that IgSF members functioned as cellular components and in molecular functions and biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that IgSF proteins were involved in signal transduction, signaling molecules and interaction, and cell communication. Microarray-based expression data showed tissue expression for 136 genes in anterior silkgland, middle silkgland, posterior silkgland, testis, ovary, fat body, midgut, integument, hemocyte, malpighian tubule and head. Expression pattern of IgSF genes in the silkworm ovary and midgut was analyzed by RNA-Seq. Expression of 105 genes was detected in the ovary in strain Dazao. Expression in the midgut was detected for 74 genes in strain Lan5 and 75 genes in strain Ou17. Expression of 34 IgSF genes in the midgut relative to the actin A 3 gene was significantly different between strains Lan5 and Ou17. Furthermore, 1 IgSF gene was upregulated and 1 IgSF gene was downregulated in strain Lan5, and 4 IgSF genes were upregulated and 2 IgSF genes were downregulated in strain Ou17 after silkworms were challenged with B. mori cypovirus (BmCPV), indicating potential involvement in the response to BmCPV-infection. These results provide an overview of IgSF family members in silkworms, and lay the foundation for further functional studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    4
    Citations
    NaN
    KQI
    []