Changes in in vivo fluorescence quenching in rye and barley as a function of reduced PSII light harvesting antenna size

1994 
The relationship between the size of the light harvesting antenna to photosystem II (LHCII) and quenching of non-photochemical and dark level fluorescence was studied in wild-type rye (Secale cereale L. cv. Musketeer) and barley (Hordeum vulgare L. cv. Gunilla) as well as in the barley chlorophyll b-less chlorina F2 mutant (H. vulgare L. cv. Dornaria, chlorina-F2). Exposure for 10 min to an irradiance of 500 μmol m−2 s−1 resulted in a strong (0.71–0.73) non-photochemical (qs) quenching of the fluorescence yield in wild-type (WT) material, while the barley chlorina F2-mutant was quenched to 75% of this level. Relaxation of qs in darkness revealed a fast initial decay, related to relaxation of the high-energy-state dependent (qE) part of qs. Etiolated seedlings of rye and barley exposed to intermittent light (IML) for 36 cycles of 2 min light and 118 min darkness had suppressed Chl b and LHCII-production in both WT rye and barley, while the barley chlorina F2-mutant became totally devoid of all LHCII-polypeptides. It was found that the levels of qs and qs were similar in control grown barley chlorina F2 and IML-grown WT rye and barley, but qs was reduced by 30 to 35% and qs by 50 to 65%, respectively, as compared to control-grown. WT plants. No significant qs could be detected in IML-grown barley chlorina F2. It is clear, from these changes in in vivo fluorescence quenching in rye and barley that a significant level of qs is detectable even in the absence of LHCII. Only when the proximal antennae are totally absent, does qE completely disappear. We conclude that the presence of LHCII is not an absolute requirement for qE-quenching and suggest that distal as well as proximal antenna may contribute to qE in vivo.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    28
    Citations
    NaN
    KQI
    []