Capture-based enrichment of Theileria parva DNA enables full genome assembly of first buffalo- derived strain and reveals exceptional intra-specific genetic diversity

2020 
Theileria parva is an economically important, intracellular, tick-transmitted parasite of cattle. A live vaccine against the parasite is effective against challenge from cattle-transmissible T. parva but not against genotypes originating from the African Cape buffalo, a major wildlife reservoir, prompting the need to characterize genome-wide variation within and between cattle- and buffalo-associated T. parva populations. Here, we describe a capture-based target enrichment approach that enables, for the first time, de novo assembly of nearly complete T. parva genomes derived from infected host cell lines. This approach has exceptionally high specificity and sensitivity and is successful for both cattle- and buffalo-derived T. parva parasites. De novo genome assemblies generated for cattle genotypes differ from the reference by ~54K single nucleotide polymorphisms (SNPs) throughout the 8.31 Mb genome, an average of 6.5 SNPs/kb. We report the first buffalo-derived T. parva genome, which is larger than the genome from the reference, cattle-derived, Muguga strain. The average non-synonymous nucleotide diversity (πN) per gene, between buffalo-derived T. parva and the Muguga strain, was 1.3%. This remarkably high level of genetic divergence is supported by an average FST, genome-wide, of 0.44, reflecting a degree of genetic differentiation between cattle- and buffalo-derived T. parva parasites more commonly seen between, rather than within, species, with clear implications for vaccine development. The DNA capture approach used provides clear advantages over alternative T. parva DNA enrichment methods used previously and enables in-depth comparative genomics in this apicomplexan parasite.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    100
    References
    0
    Citations
    NaN
    KQI
    []