10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance

2013 
A 600-μm long-cavity laser diode with a front-facet reflectance of 2% is demonstrated as a colorless OC-192 transmitter for the future DWDM-PON, which is packed in a TO-56-can package of only 4-GHz frequency bandwidth but can be over-bandwidth modulated with 10-Gbit/s non-return-to-zero data-stream. The coherent injection-locking successfully suppresses its side-mode intensity and noise floor level, which further improves its modulation throughput at higher frequencies. With increasing the coherent injection-locking power from −12 to −3 dBm, the side-mode suppression ratio significantly increases from 39 to 50 dB, which also suppresses the frequency chirp from −12 to −4 GHz within a temporal range of 150 ps. The dense but weak longitudinal modes (with 0.6-nm spacing) in the long-cavity laser diode suppresses to one single-mode in a 100-GHz wide DWDM channel for carrying the OC-192 data at 9.953 Gbit/s. Such an over-bandwidth modulated laser diode still exhibits an on/off extinction ratio of 6.68 dB and a signal-to-noise ratio of 4.96 dB, which can provide a back-to-back receiving power sensitivity of −12.2 dBm at BER of 10−9. After 25-km DSF transmission of the OOK data-stream at a bit rate up to 10 Gbit/s, the receiving power sensitivity is −10.1 dBm at a requested BER of 10−9.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    19
    Citations
    NaN
    KQI
    []