Fluctuations in complex networks with variable dimensionality and heterogeneity.

2016 
Synchronizing individual activities is essential for the stable functioning of diverse complex systems. Understanding the relation between dynamic fluctuations and the connection topology of substrates is therefore important, but it remains restricted to regular lattices. Here we investigate the fluctuation of loads, assigned to the locally least-loaded nodes, in the largest-connected components of heterogeneous networks while varying their link density and degree exponents. The load fluctuation becomes finite when the link density exceeds a finite threshold in weakly heterogeneous substrates, which coincides with the spectral dimension becoming larger than 2 as in the linear diffusion model. The fluctuation, however, diverges also in strongly heterogeneous networks with the spectral dimension larger than 2. This anomalous divergence is shown to be driven by large local fluctuations at hubs and their neighbors, scaling linearly with degree, which can give rise to diverging fluctuations at small-degree nodes. Our analysis framework can be useful for understanding and controlling fluctuations in real-world systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    3
    Citations
    NaN
    KQI
    []