Remote Sensing Image Classification Using Genetic-Programming-Based Time Series Similarity Functions

2017 
In several applications, the automatic identification of regions of interest in remote sensing images is based on the assessment of the similarity of associated time series, i.e., two regions are considered as belonging to the same class if the patterns found in their spectral information observed over time are somewhat similar. In this letter, we investigate the use of a genetic programming (GP) framework to discover an effective combination of time series similarity functions to be used in remote sensing classification tasks. Performed experiments in a Forest–Savanna classification scenario demonstrated that the GP framework yields effective results when compared with the use of traditional widely used similarity functions in isolation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    11
    Citations
    NaN
    KQI
    []