Protein Inhibitor of Neuronal Nitric Oxide Synthase (PIN) Is a New Regulator of Glucose-Induced Insulin Secretion

2006 
We previously showed that pancreatic β-cells express neuronal nitric oxide synthase (nNOS) that controls insulin secretion through two catalytic activities: nitric oxide (NO) production and cytochrome c reductase activity. We now provide evidence that the endogenous protein inhibitor of nNOS (PIN) is expressed in rat pancreatic islets and INS-1 cells. Double-immunofluorescence studies showed a colocalization of PIN with both nNOS and myosin Va in insulin-secreting β-cells. Electron microscopy studies confirmed that PIN is mainly associated with insulin secretory granules and colocated with nNOS in the latter. In addition, PIN overexpression in INS-1 cells enhanced glucose-induced insulin secretion, which is only partly reversed by addition of an NO donor, sodium nitroprusside (SNP), and unaffected by the inhibitor of cytochrome c reductase activity, miconazole. In contrast, the pharmacological inhibitor of nNOS, N ω-nitro-l-arginine methyl ester, amplified glucose-induced insulin secretion, an effect insensitive to SNP but completely normalized by the addition of miconazole. Thus, PIN insulinotropic effect could be related to its colocalization with the actin-based molecular motor myosin Va and as such be implicated in the physiological regulation of glucose-induced insulin secretion at the level of the exocytotic machinery.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    13
    Citations
    NaN
    KQI
    []