Photoacoustic Sensing of Trapped Fluids in Nanoporous Thin Films: Device Engineering and Sensing Scheme

2018 
Accessing fluid infiltration in nanogranular coatings is an outstanding challenge, of relevance for applications ranging from nanomedicine to catalysis. A sensing platform, allowing quantifying the amount of fluid infiltrated in a nanogranular ultrathin coating, with thickness in the 10–40 nm range, is here proposed and theoretically investigated by multiscale modeling. The scheme relies on impulsive photoacoustic excitation of hypersonic mechanical breathing modes in engineered gas-phase-synthesized nanogranular metallic ultrathin films and time-resolved acousto-optical read-out of the breathing modes frequency shift upon liquid infiltration. A superior sensitivity, exceeding 26 × 103 cm2/g, is predicted upon equivalent areal mass loading of a few ng/mm2. The capability of the present scheme to discriminate among different infiltration patterns is discussed. The platform is an ideal tool to investigate nanofluidics in granular materials and naturally serves as a distributed nanogetter coating, integratin...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    12
    Citations
    NaN
    KQI
    []